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Abstract. The relativistic Ornstein-Uhlenbeck Process (ROUP), which is a toy-model of relativistic ir-
reversible phenomena, is studied statistically in an explicitly covariant manner. An 8-dimensional phase
space is introduced (four dimensions for space-time coordinates, and four dimensions for the 4-momentum
coordinates), on which ‘extended’ probability distributions are defined (the usual probability distribution
is recovered as their restriction to the mass shell). An explicitly covariant Kolmogorov equation is derived
for these ‘extended’ probability distributions. The whole formalism is used to introduce a 4-current of
conditional entropy and prove that the 4-divergence of this 4-current is always positive. This constitutes
an H-theorem for the ROUP.

PACS. 03.30.+p Special relativity – 02.50.Ey Stochastic processes

1 Introduction

In 1997, Debbasch et al. introduced the Relativistic
Ornstein-Uhlenbeck process (ROUP) as a toy-model of
special relativistic irreversible phenomena. Its Galilean
counterpart, the usual Ornstein-Uhlenbeck process, mod-
els the motion of a particle which diffuses in a given fluid
by a couple of stochastic equations which govern the time-
evolution of both the position and velocity of the particle.
If the fluid in which the particle diffuses is in a thermo-
dynamical equilibrium, the Galilean Ornstein-Uhlenbeck
process has a natural preferred inertial frame, which is
the global rest-frame of the fluid. Indeed, the study of the
Galilean process is usually carried out in that frame only,
without explicit mention that the process could also be
investigated in other reference frames.

The ROUP naturally shares some features with its
Galilean predecessor. For physical reasons which have al-
ready been discussed at length in [1], the ROUP was not
built to be considered as a realistic model of Relativistic
diffusion. Nevertheless, it can still be described, mainly
for simplicity reasons, by using the image of a Brown-
ian special relativistic particle diffusing in a surrounding
(special relativistic) fluid. Let us suppose that this fluid
is in a state of equilibrium. Then, there exists an inertial
frame (R) where the fluid is at rest; this frame is usually
called the global rest-frame of the fluid; it then consti-
tutes a naturally preferred inertial frame for the ROUP.

a e-mail: rivet@obs-nice.fr

The ROUP has been originally defined by the couple of
covariant stochastic evolution equations which, in theory,
permit the study of the ROUP in an arbitrary inertial
frame. As in the Galilean case, these equations determine
the time-evolution of both position and momentum of the
diffusing particle. It is to be noted, however, that, by con-
struction, the noise used in these equations takes a simple,
easily tractable form in (R) only.

In the Galilean problem, an important consequence
of the equations of motion of the Brownian particles is
the transport equation verified by the distribution func-
tion in phase-space. This equation is commonly called the
Kramers or forward Kolmogorov equation. In the relativis-
tic case, this transport equation turns out to be even more
important than in the Galilean problem because the orig-
inal stochastic equations which define the ROUP are non-
linear (in contradistinction to their Galilean counterparts)
and the relativistic process can only be practically stud-
ied through its associated transport equation. The rela-
tivistic Kramers equation has been first obtained in (R),
the preferred frame of the process and only later on in
an arbitrary inertial frame [2]. However, because of the
technique used in the derivation, this equation has been
written so far in a covariant but not manifestly covariant
fashion. In particular, the phase-space has been consid-
ered to be the physical 6-dimensional one and the distri-
bution function of the diffusing particle, in each frame, has
been written as a function of time in that frame and of
the coordinates of the particle in this usual 6-dimensional
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phase-space. In relativistic statistical physics, it has be-
come customary to introduce an extended 8-dimensional
phase-space, which is essentially the (Cartesian) product
of the space-time manifold and of a corresponding ex-
tended 4-dimensional momentum-space (more precisely,
the extended phase-space can be identified with the tan-
gent bundle to the space-time manifold). A distribution
function is then introduced on this extended phase-space,
treating the fourth momentum-component as an indepen-
dent variable. Every calculation is then carried out with
this distribution function and the physical results can be
recovered by restricting every equation to the mass-shell.
This sort of formalism is usually considered very elegant
and, because it really treats time as a space-time inde-
pendent coordinate with its associated independent mo-
mentum coordinate, it generally simplifies calculations a
lot. Moreover, the use of a manifestly covariant formalism
seems mandatory in the context of general relativity.

The aim of the present article is to introduce such
a manifestly covariant formalism for the ROUP and to
propose a first application of this formalism. More pre-
cisely, this article is organized as follows. In Section 2, we
first review some basic facts about the ROUP and intro-
duce the principal tools which will be of use in the other
sections. In particular, the basics of a manifestly covari-
ant formalism adapted to the ROUP are introduced at
this stage. This formalism differs from the most usual,
manifestly covariant formalism commonly used in rela-
tivistic kinetic theory; indeed, for the transport equation
associated to the ROUP to have regular coefficients over
the whole extended phase-space, it is necessary to limit
the momentum-space to half the 4-dimensional space IR4

(usual manifestly covariant kinetic theory uses the whole
space IR4 as momentum-space). For various technical rea-
sons, it is then not obvious that the distribution function
defined over this extended phase-space can be chosen to be
a Lorentz-scalar, as is customarily done in the more stan-
dard manifestly covariant formalism. We have therefore
included in Appendix A a detailed proof of this important
result. In Section 3, we derive for the ROUP the man-
ifestly covariant transport equation verified by the dis-
tribution function defined on the extended 8-dimensional
phase-space. As expected, this equation turns out to be
simpler than the original Kramers equation verified by
the standard distribution function defined on the usual
6-dimensional phase-space. In Section 4, we use the for-
malism just developed to show that a conditional en-
tropy 4-current can be associated to the ROUP and we
also prove that the 4-divergence of this 4-current is always
non-negative. This proves that a frame-dependent condi-
tional entropy can be associated to the ROUP and that
this entropy is a never decreasing quantity, as it should
naturally be. Some calculations necessary to prove this H-
theorem are actually quite heavy and their detailed pre-
sentation has therefore been relegated to Appendix B. Fi-
nally, we review our results in Section 5 and discuss their
possible extensions.

2 Fundamentals

2.1 Notation

In this article, c denotes the velocity of light, and the
signature of the metric is chosen to be (+,−,−,−). Bold-
faced symbols designate 3-vectors, whereas 4-vectors ap-
pear as normal italic symbols. m and γ are respectively
the mass of the “diffusing” particle and its Lorentz factor,
whose expression in terms of the 3-momentum p of the

particle reads: γ(p) =
√

1 + p2

m2c2 . T designates the abso-
lute temperature and k the Boltzmann constant. As usual,
Greek indices label the components of 4-vectors and run
from 0 to 3, whereas Latin ones label the components of
3-vectors and run from 1 to 3.

2.2 The ROUP

In (R), the global rest-frame of the fluid which surrounds
the diffusing particles, the ROUP can be defined by the
following couple of stochastic equations:


d
dt

x =
p
mγ

d
dt

p = −α p
γ

+
√

2D
dW
dt

, (1)

where dW
dt indicates that the stochastic part Fs of the

force which acts on the diffusing particle is, up to the
multiplicative constant

√
2D, the derivative of the Wiener

process, i.e., a Gaussian white noise. The positive constant
α enters the definition of the deterministic part Fd of the
force acting on the particle and plays the role of a friction
coefficient, as in the Galilean case.

From these equations, it is possible to derive a trans-
port equation which fixes, in the same reference frame,
the time-evolution of the distribution function Π(t,x,p),
defined over the standard phase space IR6 and associated
to the usual measure d3xd3p (see [1]):

∂tΠ +∇x .

(
p
mγ

Π

)
+∇p .

(
−αp

γ
Π

)
= D ∆pΠ.

(2)

As discussed in [2], there are essentially two dis-
tinct ways of obtaining the transport equation in an-
other inertial frame. The first one is simply to invoke
the scalar nature of the relativistic distribution func-
tion Π. The other one is based directly on stochas-
tic calculus and, being much more involved than the
first one, cannot be summed up here. As they should,
both methods deliver the same result. If one introduces
another inertial frame (R′), which moves with velocity
V = V ex with respect to (R) and whose origin and
axes coincides with those of (R) at time t = 0, one has,
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with obvious notations:

∂t′Π
′ +∇x′(

p′

mγ′
Π ′) +∇p′(F′dΠ

′) =

D
∂

∂p′x

{
1
d′

(
1 +

Γ 2β2(p′y2 + p′z2)
p′20

)
∂Π ′

∂p′x

}

−D ∂

∂p′x

{
Γβ

p′y

p′0

∂Π ′

∂p′y
− Γβ p

′z

p′0

∂Π ′

∂p′z

}
+D

∂

∂p′y

{
−Γ β

p′y

p′0

∂Π ′

∂p′x
+ d′

∂Π ′

∂p′y

}
+D

∂

∂p′z

{
−Γ β

p′z

p′0

∂Π ′

∂p′x
+ d′

∂Π ′

∂p′z

}
.

(3)

In the above equation, β stands for V/c, Γ for 1√
(1−β2)

,

and d′ for the quantity Γ
(

1 + p′x

p′0

)
. Actually, (3) is

formally a new result; indeed, only the spatially one-
dimensional, simpler version of (3) has already been pub-
lished [2]. However, equation (3) can be obtained by ex-
actly the same method as the one introduced in [1] and
we feel that a complete presentation of that rather heavy
calculation is not necessary here.

It is evident that (3) as it stands cannot be used for any
practical calculations. As hinted to in the Introduction to
this article, a natural way to remedy the situation is to
introduce a manifestly covariant formalism in which the
four momentum components will be treated as indepen-
dent variables. The physical results will then be recovered
by restricting every equation to the mass-shell.

2.3 Manifestly covariant formalism

Let us begin by introducing the relativistic extended
phase-space for the Brownian particle. In any inertial
frame (S), this phase-space is 8-dimensional; the first four
degrees of freedom are the four space-time coordinates in
that frame and the remaining ones are the associated four
momentum components. The three spatial momentum-
components can naturally take any real value. However,
the range of variation one should choose for the zeroth
momentum-component treated as an independent degree
of freedom is not obvious. Many authors seem to implic-
itly retain the whole real-axis but, for reasons which will
be made clear in Section 3.2, such a choice is not advisable
if one wants to develop a manifestly covariant formalism
for the ROUP. If one conventionally denotes by P the 4-
dimensional region of IR4 to which the variation of the
4-vector p is restrained, it will be argued in Section 3.2
that a natural choice for P is the “half-space” defined by
the condition: pU > 0, where U stands for the 4-velocity
of the fluid in which the Brownian particles diffuse. We
will show that this choice for P is the simplest possible
one which ensures that every coefficient in the manifestly
covariant transport equation that will be obtained in the
next section is actually regular on the whole phase-space.

In any given reference frame, the condition pU > 0 can
be transcribed in terms of the the zeroth component of p
and reads:

p0 > ε(U,p) (4)

with the quantity ε(U,p) defined by:

ε(U,p) =
pU
U0
· (5)

Reasonably enough, the mass-shell is therefore included
in P ; indeed, the sign of the scalar pU on the mass-shell
can be checked by evaluating this quantity in (R), the
inertial (Lorentz-)frame in which the 3-velocity U of the
fluid which surrounds the diffusing particles vanishes; if
p is the 3-momentum of the Brownian particle in that
frame, one can write trivially pU = mcγ(p); this makes
clear that the mass-shell is included in P .

To any function g defined on the extended phase-space
corresponds a unique, time-dependent function g̃ on the
physical 6-dimensional phase-space:

g̃(t,x,p) =
∫ +∞

ε(U,p)

g(t,x, p0,p) δ
(
p0 −mcγ(p)

)
dp0. (6)

It is therefore natural, in any reference-frame, to introduce
a function f defined over the extended phase-space, such
that f̃ is identical to the usual distribution function Π
defined over the 6-dimensional physical phase-space:

Π(t,x,p) =
∫ +∞

ε(U,p)

f(t,x, p0,p) δ
(
p0 −mcγ(p)

)
dp0.

(7)

Naturally, given a distribution Π, it is always possible to
find at least one f which verifies (7) and the solution is
generally not unique.

In conventional manifestly covariant kinetic theory, it
is a standard result that the distribution function f de-
fined on the extended phase-space IR4 × IR4 is a Lorentz-
scalar. That f is also a Lorentz-scalar in the present for-
malism is not obvious at all, notably because the zeroth
momentum-component has now a restricted range of vari-
ation. We therefore felt necessary to present in this article
a complete proof that, in the manifestly covariant formal-
ism associated to the ROUP, f can also be chosen as a
Lorentz-scalar. Because this proof is rather intricate, it is
proposed as an appendix to the main text.

3 Manifestly covariant Kolmogorov equation

The final aim of this section is to obtain a transport
equation verified by the distribution function f on the
extended phase-space which, after restriction to the mass-
shell, gives back Kramers equation for the original distri-
bution Π on the physical 6-dimensional phase-space. The
simplest way to proceed is to work first in the preferred
inertial frame of the ROUP, (R), where Kramers equation
forΠ takes a simpler form, and then to boost the obtained
transport equation for f in this frame to another arbitrary
inertial frame.
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3.1 Transport equation on the extended phase-space
in (R)

By definition, in (R), the 4-velocity U of the fluid in which
the particles diffuse has vanishing spatial components and
its time component is therefore equal to unity (see also be-
low). In (R), the region P accessible to the 4-momentum
p is therefore only restricted by the condition: p0 > 0. Let
now h be any function defined over the extended phase-
space in (R) and let h̃ be its restriction to the mass-shell,
defined by a relation similar to (6). The well-known prop-
erties of the delta-function imply that:

∇ph̃ =
∫ +∞

0

C(h) δ
(
p0 −mcγ(p)

)
dp0, (8)

where the differential operator C is defined by:

C =
1
p0

(p ∂p0 + p0 dppv). (9)

In that way, it becomes possible to re-express in (2) every
derivative of Π with respect to p in terms of derivatives
of f . On thus obtains the following equation, which is
mathematically equivalent to (2):∫ +∞

0

1
p0
L(f) δ

(
p0 −mcγ(p)

)
dp0 = 0 (10)

where the differential operator L is defined by:

L(f) = p0∂tf + p · ∇xf + p0C(Fdf)− p0D C2(f). (11)

As before, Fd stands for the deterministic 3-force acting
on the diffusing particles. According to (1):

Fd = −α p
γ(p)

· (12)

In equation (11), one can actually use for Fd any other
expression which reduces to (12) on the mass-shell; this
point will be discussed with greater detail in the imme-
diately following section. A sufficient (but not necessary)
condition for equation (2) to be verified is simply that f
belongs to the kernel of L:

L(f) = 0. (13)

Equation (13) is the desired Kolmogorov equation for f
in (R).

3.2 Manifestly covariant form of Kolmogorov equation

To obtain a manifestly covariant Kolmogorov equation for
f , one has to express the operator L in a manifestly covari-
ant manner. Since f can be chosen as a Lorentz-scalar, one
expects L also to be a Lorentz-scalar. The first two terms
on the right-hand side of (11) can trivially be rewritten
as pµ∂xµf . The following two terms involve the determin-
istic 3-force Fd. To express their contribution in a mani-
festly covariant manner, it is only logical to revert to the

manifestly covariant expression for the deterministic force
introduced in [1]:

Fµd = −mcλµν (uν − Uν) +mcλαβuα
(
uβ − Uβ

)
uµ (14)

where, as before, U stands for the 4-velocity of the fluid
in which the particle diffuses and u stands for the veloc-
ity 4-vector of the diffusing particle itself. The tensor λ
characterizes the ‘friction’ of the fluid on the particle. Its
physically correct expression has also been given in [1] and
reads:

λµν =
α

(uU)2
∆µ
ν (15)

where ∆ is the 4-dimensional projector on the hypersur-
face orthogonal to U, the 4-velocity of the fluid which sur-
rounds the Brownian particle. Because λ is proportional
to the projector ∆, equation (14) actually simplifies into:

Fµd = −mcλµνuν +mcλαβuαu
β uµ. (16)

Equation (16) is actually valid on the mass-shell and is
susceptible of various off-shell generalizations. A conve-
nient definition of the deterministic 4-force acting on the
particle in terms of its possibly off-shell momentum p is:

Fµd = −λµνpν
p2

m2c2
+ λαβ

pαp
β

m2c2
pµ, (17)

with the tensor λ related to p by the relation:

λµν =
α(mc)2

(pU)2
∆µ
ν . (18)

First, (17) clearly reduces on the mass-shell to (16).
Second, definition (17) presents the advantage of making
Fd orthogonal to p, even off-shell. One can introduce a
3-vector Fd, defined by:

Fd =
1
mc

(
p · Fd, p0Fd

)
, (19)

and definition (14) then leads to the following expression
for Fd in (R):

Fd = −αmc p
p0
, (20)

which does reduce to (12) when p is on the mass-shell. It
is then straightforward to check that the contribution of
the two terms involving Fd in (11) can be simply written
as mc∂pµ(Fµd f).

The first step in dealing with the last contribution to L
is to view the differential operator C as the 3-dimensional
vectorial part of a 4-dimensional operator Cµ whose time-
component vanishes in (R). Considering that, in (R), the
components of U and those of the projector ∆ are given
by:

Uµ = (1, 0, 0, 0), (21)
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and

∆µ
ν =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (22)

it is straightforward to verify that:

Ci =
(
Uβ∆iν − Uν∆iβ

) pβ
pU

∂

∂pν
(23)

and that the manifestly covariant expression for C is:

Cµ =
(
Uβ∆µν − Uν∆µβ

) pβ
pU

∂

∂pν
· (24)

The last term on the right-hand side of (11) can there-
fore be identified as the form taken by the scalar operator
−DCµ Cµ in the reference frame (R).

Adding up all the preceding contributions, one obtains
the manifestly covariant form of L:

L(f) = pµ∂xµf +mc ∂pµ(Fµd f)− (pU) DCµ Cµ(f).
(25)

One can make explicit the differential nature of C by in-
troducing the tensor K, whose contravariant components
are defined by:

Kµρβν = UµUβ∆ρν − UµUν∆ρβ

+UρUν∆µβ − UρUβ∆µν . (26)

The manifestly covariant Kramers equation then reads:

pµ∂xµf + ∂pµ (mcFµd f)−DKµρβν ∂pρ

(
pµ pβ
pU

∂pνf

)
= 0.

(27)

To facilitate further manipulations, it is also convenient
to group all terms containing only first derivatives with
respect to the various components of p. Equation (27) can
be rewritten as:

pµ∂xµf + ∂pµ (Iµf)− ∂pµpν (Jµνf) = 0, (28)

where the tensors I and J are defined by:

Iµ = mcFµd +DKρµβν∂pν

(
pρpβ
pU

)
(29)

and

Jµν = DKρµβν pρpβ
pU
· (30)

Time has now come to discuss and justify our choice
for the region P accessible to the 4-momentum p of the
particle. Equations (29) and (30) make clear that some
coefficients in the manifestly covariant transport equation
become singular on the hypersurface pU = 0. We have
therefore chosen for P the largest region in momentum-
space which contains the mass-shell and in which the co-
efficients of the manifestly covariant transport equation
exhibit no singularity.

4 Entropy 4-current

4.1 Definition of the entropy current

In the general theory of Markovian stochastic processes,
it is customary to introduce the concept of conditional
entropy [3]. Let X be a set of stochastic variables whose
time-evolution in some (phase-)space Ω is governed by a
given Markovian process. Let now f and g be two proba-
bility distributions defined on Ω. The conditional entropy
Hc(f | g) of f with respect to g can be conveniently de-
fined by [3]:

Hc(f | g) = −
∫
Ω

f

[
ln
(
f

g

)
+
g

f
− 1
]

dX, (31)

where dX stands for the (usual) Lebesgue measure on Ω.
The conditional entropy thus defined is susceptible of at
least two different physical interpretations. We refer the
reader to [3] for a substantial general discussion of the is-
sue. In any case, if one chooses for g an invariant measure
of the process, i.e., a stationary solution of the transport
equation, and computes the conditional entropy of an ar-
bitrary solution f of the transport equation at various
times, one obtains a time-dependent quantity H̃c(t) and a
theorem due to Voigt [3] proves that, under rather general
circumstances, H̃c(t) is a non-decreasing function of time,
which justifies the name entropy.

To follow the traditional relativistic theories of con-
tinuous media, one may wish to introduce not only an
entropy for the ROUP but also an entropy 4-current. It
is easier to proceed in a manifestly covariant manner and
this is where the formalism introduced in the preceding
sections proves most useful. The first step consists in iden-
tifying a time- and position- independent solution of (27)
which can serve as stationary equilibrium distribution in
phase-space. It is relatively straightforward to check that
the following distribution f∗ qualifies:

f∗(p) =
1

4π(mc)3

mc2

kT

K2(mc2kT )
e−

c
kT (pU), (32)

where K2 is the second order modified Hankel function, k
is the Boltzmann constant, and T the temperature of the
surrounding fluid. As may have been expected, f∗ is sim-
ply the standard Maxwell-Jüttner distribution [4] written
in a manifestly covariant manner (see for example [5]).

A candidate for the entropy 4-current Sµc should be
constructed from the expression Hc(f | g) as the usual
particle 4-current jµ is constructed from the total num-
ber N of particles. It is customary in manifestly covariant
relativistic kinetic theory to define the particle current by
the expression [6]:

jµ(x) = 2
∫

IR4
pµf(x, p)θ(p0)δ

(
p2 −m2c2

)
d4p, (33)

where the θ function enforces the positivity of the time
component of p in the integral. To link this definition with
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the developments presented earlier in Section 2.3, one can
use the identity:

δ(p2−m2c2) =
1

2p0

[
δ
(
p0 −mcγ(p)

)
+ δ

(
p0 +mcγ(p)

)]
.

(34)

Equation (33) then delivers:

n(x) =
∫

IR4
f(x, p)δ

(
p0 −mcγ(p)

)
d4p (35)

and

j(x) =
∫

IR4

p
p0
f(x, p)δ

(
p0 −mcγ(p)

)
d4p, (36)

where, as usual, n and j stand respectively for the spatial
particle density and its associated 3-current. Both expres-
sions are clearly consistent with the definition of Π in
terms of f given by equation (7). Considering (31) and
(33), the most natural definition for the entropy 4-current
Sµc reads [6,7]:

Sµc (x) = −
∫
P
pµf

[
ln
(
f

f∗

)
+
f∗

f
− 1
]

×θ(p0)δ(p2 −m2c2) d4p.

(37)

4.2 H-theorem

Let us now prove that the 4-divergence of the conditional
entropy Sµc is indeed non-negative. Since f∗ does not de-
pend on x, direct differentiation of (37) leads to:

∂xµS
µ
c = −

∫
P

(pµ∂xµf) ln
(
f

f∗

)
×θ(p0) δ(p2 −m2c2) d4p.

(38)

Some non-trivial algebra, rejected in Appendix B, is nec-
essary to derive from (38) the following expression for
∂xµS

µ
c :

∂xµS
µ
c =

∫
P
fJµνDµDν θ(p0) δ(p2 −m2c2) d4p. (39)

The tensor J has already been defined by equation (30).
A sufficient condition for the integral in the preceding

equation to be non-negative is for the Lorentz-scalar

J µνDµDν

to be also non-negative. One can most easily prove this is
the case by evaluating this scalar in (R), the proper rest-
frame of the fluid in which the particle diffuses. Making
use of equations (30, 26, 21) and (22), one obtains the

components of J in that frame:

J 00 =
D

p0
p2

J 0i = − D

p0
p0pi

J i0 = − D

p0
pip0

J ij =
D

p0
(p0)

2
δij , (40)

where δij stands for the usual 3-dimensional Kronecker
symbol. This leads to:

J µνDµDν =
D

p0

[
D0p− p0D

]2
. (41)

This proves that the integrand in (39) is non-negative in
any reference frame and that the 4-divergence of the en-
tropy current is therefore also non-negative. This consti-
tutes the H-theorem for the ROUP. Indeed, one can then
define, in an arbitrary inertial frame, the conditional en-
tropy of the process to be the 3-dimensional volume inte-
gral of the first component of the entropy current Sc and
the H-theorem proves that this entropy is a non-decreasing
function of the time-coordinate in that reference frame.
Naturally, when f = f∗, the 4-vector D vanishes identi-
cally and, because of (41), so does the divergence of the en-
tropy current; in that case, the state of the system is spa-
tially uniform in any reference frame and its conditional
entropy density is also constant in time, as it should be.

5 Conclusion

In this article, we have developed for the special-
relativistic Ornstein-Uhlenbeck process a manifestly
covariant formalism similar to the one commonly used
in relativistic statistical physics [6,8]. In particular, af-
ter having reviewed some basics facts about the ROUP,
we have introduced a variant of the usual manifestly co-
variant formalism and we have derived a manifestly co-
variant transport equation for the ROUP. This equation
has a simpler structure than its non-manifestly covariant
equivalent introduced in earlier publications. The mani-
festly covariant formalism introduced in this article differs
from the most usual one by the fact that the momentum-
space of the diffusing particles is restricted to half the
4-dimensional space IR4. This is the simplest possible
choice which makes every coefficient in the transport equa-
tion singularity-free on the whole phase-space. We have
also presented a complete proof that, with this choice of
momentum-space, the distribution-function over the ex-
tended phase-space can still be chosen to be a Lorentz-
scalar.

As an application of the whole formalism, we have
proposed a manifestly covariant expression for the condi-
tional entropy 4-current associated to the ROUP and we
have used the (manifestly covariant) transport equation
to prove an H-theorem for the process.
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Until now, the ROUP has only been studied in the
special relativistic context. The next logical step is nat-
urally to extend the study of the process to the general
relativistic realm. This appears to be a most formidable
task if one starts from non-manifestly covariant special
relativistic equations but the material presented in this
article should make the job easier. The general relativistic
transport equation and some possible astrophysical appli-
cations will be addressed in a forthcoming publication.

It is our pleasure to thank J. Gariel for many helpful discus-
sions.

Appendix A

It has been proven in [2] that Π is a Lorentz-scalar. Start-
ing from this result, it is possible to prove directly that f
can be chosen to be also Lorentz-invariant. To this end,
it is convenient to introduce another inertial frame (S′),
linked to (S) by a proper Lorentz-transformation along
the x-axis. With standard notations, one has: p′0 = Γ

(
p0 − β px

)
p′x = Γ

(
px − β p0

) , (42)

and  p0 = Γ
(
p′0 + β p′x

)
px = Γ

(
p′x + β p′0

) , (43)

with β = V/c and Γ = (1−β2)−1/2. The other momentum
components are invariant and, as far as the space-time
degrees of freedom are concerned, y and z do not change
either. On the contrary, one has the following well-known
relations between (t′, x′) and (t, x): ct′ = Γ (ct− β x)

x′ = Γ (x− βct)
. (44)

It is important to stress that, at this point, (42) is consid-
ered to be valid for any 4-momentum p, both on and off
the mass-shell.

The fact that Π is a Lorentz-scalar is expressed math-
ematically by the following relation:

Π ′(t′,x′, p̃′) = Π(t,x,p) (45)

where Π ′ designates the distribution function in (S′) and
where the 3-vector p̃′ is obtained from the 3-vector p by
applying the Lorentz-boost (42) to the on-shell 4-vector
(p0 = mcγ(p),p) (the reason for the “extra”-tilde in the
notation will become clear shortly). Combining (7) and
(45), one can write:

Π ′(t′,x′, p̃′) =
∫ +∞

ε(U,p)

f(t,x, p0,p) δ
(
p0 −mcγ(p)

)
dp0.

(46)

To study the variance of f , it is therefore necessary to
investigate how the integration range, the ‘delta-function’
and the infinitesimal dp0 which appear in the right-hand
side of (46) transform under a Lorentz-boost. All this es-
sentially amounts to changing the integration variable in
(46) from p0 to p′0. Differentiating (42) at fixed p, one
obtains immediately:

dp′0 = Γdp0, (47)

As far as the delta-function is concerned, it is convenient
to rewrite its argument σ as a function of p′0, for a fixed
p (or p̃′, equivalently):

σ(p′0) ≡ p0 −mcγ(p)

= Γ
(
p′

0 + β p′
x
)
−mcγ(p).

(48)

In this last equation, p′x itself has to be considered as
a function of the variable p′0, for a fixed p. This might
seem strange but, on closer look, p′ is defined by (42)
and is therefore not generally identical to p̃′, since p0 is
treated as an independent momentum coordinate, which
is not required, at this stage, to be equal to mcγ(p). The
first equation in (42), combined with the first equation
in (43) leads to the following explicit expression for p′x in
terms of p′0 (for a fixed p):

p′x =
1
Γ
px − β p′0. (49)

Inserting this result in (48) yields the following explicit
expression for the argument σ of the delta-function in (46):

σ(p′0) =
1
Γ

(
p′0 − Γ

(
mcγ(p)− βpx

))
=

1
Γ

(
p′0 −mcγ(p̃′)

)
.

(50)

Using (47) and a standard property of the delta-function1,
one can write:

δ
(
p0 −mcγ(p)

)
dp0 = δ

(
1
Γ

(
p′0 −mcγ(p̃′)

))dp′0

Γ

= δ
(
p′0 −mcγ(p̃′)

)
dp′0. (51)

Some extra-care has to be used in the transformation of
the integration range. The upper-limit in integral (46) cor-
responds, loosely speaking, to a 4-momentum with com-
ponents in (S) (p0 = +∞,p); the zeroth-component of
its Lorentz-transform is therefore simply p′0 = +∞. The
lower-limit in integral (46) corresponds to a 4-momentum
with components in (S) (p0 = ε(U,p),p). The components
of its Lorentz-transform are given by (42); let us denote
them by (ε′(U,p),p′ε). The quantity ε′(U,p) is the correct
lower-limit for the integral (46) using p′0 as variable.

1 For any non-zero real number a, δ(a x) = a−1δ(x).
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Combining the previous results, one can write:

Π ′(t′,x′, p̃′) =
∫ +∞

ε′(U,p)

f(t,x, p0,p)

×δ
(
p′0 −mcγ(p̃′)

)
dp′0.

(52)

Let us now define f ′ by the simple relation:

f ′(t′,x′, p′0,p′) = f(t,x, p0,p). (53)

Equation (52) reads, in terms of f ′:

Π ′(t′,x′, p̃′) =
∫ +∞

ε′(U,p)

f ′(t′,x′, p′0,p′)

×δ
(
p′0 −mcγ(p̃′)

)
dp′0.

(54)

The delta-function in the preceding equation restricts the
integration to the mass-shell; since the difference between
p′ and p̃′ precisely vanishes on the mass-shell, it follows
that, in (54), p′ can be replaced by p̃′. This leads to:

Π ′(t′,x′, p̃′) =
∫ +∞

ε′(U,p)

f ′(t′,x′, p′0, p̃′)

×δ
(
p′0 −mcγ(p̃′)

)
dp′0.

(55)

Comparison of equation (55) with definition (7), which
is valid in any reference-frame, reveals that proving that
f ′ can be used as the distribution function over the ex-
tended phase-space in (S′) comes down to showing that
the lower-limit in integral (55) can be replaced by the
quantity ε(U ′, p̃′) defined, in accordance with (5), by:

ε(U ′, p̃′) =
p̃′ ·U′
U ′0

· (56)

Because of the presence of the “delta-function”, a suffi-
cient condition for this to be possible is simply for ε(U ′, p̃′)
to be (strictly) inferior to mcγ(p̃′). That this is indeed the
case can be most easily seen by the following argument.
By equation (56), one has:

(ε(U ′, p̃′), p̃′)U ′ = 0 · (57)

On the other hand:

(mcγ(p̃′), p̃′)U ′ = (mcγ(p),p)U = mcγ(p) > 0 · (58)

Since U ′0 is a positive quantity, both preceding relations
prove that ε(U ′, p̃′) is indeed inferior to γ(p̃′). This shows
that f ′ can be used as a distribution function on the ex-
tended phase-space in (S′). Because of definition (53), this
proves that we can treat f as a Lorentz-scalar. It surely
makes no sense to state that f is (or has to be) Lorentz-
invariant for Π to be a Lorentz-scalar since there is gen-
erally more than one function f which corresponds to a
given physical distribution Π.

Appendix B

As explained in the Introduction and in Section 4.2, this
Appendix contains some technical calculations which are
necessary to prove the H-theorem but whose inclusion in
the main part of this Article seemed unnecessary. More
precisely, let us now present how equation (39) can be
derived from equation (38).

Starting from expression (38) for the 4-divergence of
the conditional entropy and making use (28) to eliminate
all derivatives of f with respect to space-time coordinates,
one obtains:

∂xµS
µ
c =

∫
P
∂pµ [Iµf − ∂pν (Jµνf)] ln

(
f

f∗

)
×θ(p0) δ(p2 −m2c2) d4p.

(59)

We will deal with the various integrals over P which
appear in the calculation that follows by integrating most
of them by part. Border terms will then appear. Some
of them trivially vanish if one supposes, as is customary
in kinetic-theory and statistical physics, that phase-space
distribution functions tend to zero sufficiently rapidly at
infinity. One is then left with the border terms that are to
be evaluated on the hyperplane pU = 0. These terms also
vanish for the following reason. On this hyperplane, one
can write:

p0 = p · U
U0

, (60)

with

U0 =
√

1 + U2 · (61)

It follows from these equations that p0 <
√

p2, so that, on
the hyperplane under consideration, p2 = (p0)2 − p2 < 0.
The “delta-function” which enforces the mass-shell restric-
tion therefore vanishes on this hyperplane; this is enough
to ensure that the corresponding border-terms also van-
ish. We will now proceed in the calculation without further
mention of all border-terms.

Integrating equation (59) by part, one obtains:

∂xµS
µ
c =

−
∫
P

[Iµf − ∂pν (Jµνf)]
[
∂pµf

f
− ∂pµf

∗

f∗

]
×θ(p0) δ(p2 −m2c2) d4p

−
∫
P

[Iµf − ∂pν (Jµνf)] ln
(
f

f∗

)
×∂pµ

(
θ(p0) δ(p2 −m2c2)

)
d4p.

(62)

To ease further calculations, it is convenient to introduce
the three auxiliary integrals I1, I2 and I3, respectively
defined by:

I1 = −
∫
P
Iµf

[
∂pµf

f
− ∂pµf

∗

f∗

]
×θ(p0) δ(p2 −m2c2) d4p,

(63)
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I2 =
∫
P
∂pν (Jµνf)

[
∂pµf

f
− ∂pµf

∗

f∗

]
×θ(p0) δ(p2 −m2c2) d4p

(64)

and:

I3 = −
∫
P

[Iµf − ∂pν (Jµνf)] ln
(
f

f∗

)
×∂pµ

(
θ(p0) δ(p2 −m2c2)

)
d4p.

(65)

With these definitions, the 4-divergence of the entropy
current simply reads:

∂xµS
µ
c = I1 + I2 + I3. (66)

To proceed, let us concentrate first on the expression of
the first integral I1. Because f∗ is a time- and space-
independent solution to Kramers equation, (28) delivers:

Iµ∂pµf
∗ = ∂pµpν (J µν f∗)− f∗∂pµIµ. (67)

Inserting this relation into (63), one finds the following,
alternative expression for the integral I1:

I1 = −
∫
P

[
∂pµ (Iµf)− f

f∗
∂pµpν (Jµνf∗)

]
×θ(p0) δ(p2 −m2c2) d4p.

(68)

Integrating the right hand side of this equation by part,
one obtains:

I1 = −
∫
P
∂pν (Jµνf∗) ∂pµ

(
f

f∗

)
×θ(p0) δ(p2 −m2c2) d4p

+
∫
P

[
Iµf − ∂pν (Jµνf∗)

f

f∗

]
×∂pµ

(
θ(p0) δ(p2 −m2c2)

)
d4p.

(69)

Introducing the tensor D defined by:

Dµ =
∂pµf

f
− ∂pµf

∗

f∗
, (70)

one has equivalently:

I1 = −
∫
P
∂pν (Jµνf∗)Dµ

f

f∗

×θ(p0) δ(p2 −m2c2) d4p

+
∫
P

[
Iµf − ∂pν (Jµνf∗)

f

f∗

]
×∂pµ

(
θ(p0) δ(p2 −m2c2)

)
d4p.

(71)

Combining (71) and (64), one obtains the following ex-
pression for the 4-divergence of the entropy current:

∂xµS
µ
c =

∫
P

[
∂ν (Jµνf)− f

f∗
∂pν (Jµνf∗)

]
Dµ

×θ(p0) δ(p2 −m2c2) d4p

+
∫
P

[
Iµf − ∂pν (Jµνf∗)

f

f∗

]
×∂pµ

(
θ(p0) δ(p2 −m2c2)

)
d4p

+I3.

(72)

The first term on the right-hand side of (72) can be further
simplified (without any additional integration by part)
and, regrouping the last two integrals in (72), one has:

∂xµS
µ
c =

∫
P
fJµνDµDν θ(p0) δ(p2 −m2c2) d4p

+
∫
P
Nµ∂pµ

(
θ(p0) δ(p2 −m2c2)

)
d4p

(73)

where the 4-vector N is defined by:

Nµ = − ln
(
f

f∗

)
[Iµf + ∂pν (Jµνf)]

+
f

f∗
[Iµf∗ − ∂pν (Jµνf∗)] .

(74)

Let IN be the second integral in (73). We will now show
that this integral vanishes. A formal blunt calculation of
the derivative ∂pµ

(
θ(p0) δ

(
p2 −m2c2

))
would lead to the

appearance of a product of two deltas and such a product
is not (mathematically) well-defined. To avoid the prob-
lem, let us introduce a class of regular functions gε, which
converge uniformly towards δ when ε tends to zero. In-
stead of computing the aforementioned derivative, we will
first evaluate the quantity dµε , defined by:

dµε = ∂pµ
(
θ(p0) gε

(
p2 −m2c2

))
(75)

and, only afterwards, let ε tend towards zero. One has
immediately:

dµε = δ(p0) δ0
µ gε

(
p2 −m2c2

)
+θ(p0) ∂pµgε

(
p2 −m2c2

)
;

(76)

denoting by X the variable of gε, one has therefore:

dµε = δ(p0)δ0
µ gε

(
−p2 −m2c2

)
+2 θ(p0) pµ

(
dgε
dX

)
X=p2−m2c2

.

(77)

Let now ε tend towards zero; the function gε then tends
towards δ and the first term on the right-hand side of (77)
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vanishes identically because the argument of this δ is
strictly negative for any real momentum. One is therefore
left with:

lim
ε→0

dµε = 2 θ(p0) pµδ′
(
p2 −m2c2

)
. (78)

The second integral in (73) therefore reads:

IN = 2
∫
P
Nµpµθ(p0) δ′

(
p2 −m2c2

)
d4p. (79)

This integral vanishes because the scalar product of N
with p vanishes identically. Indeed, there are two contri-
butions to N . Both involve, according to (74), the differ-
ential operator Kµ = Iµ−∂pνJµν . The first contribution is
proportional to Kµ(f) and the second one is proportional
to Kµ(f∗). The scalar product of p with N vanishes be-
cause the scalar product of p with K(h) vanishes for any
(sufficiently regular) function h. Indeed, using (29) and
(30):

pK(h) = pµ

[√
p2Fµd +DKρµβν∂pν

(
pρpβ
pU

)]
h

−pµ ∂pν
[
DKρµβν pρpβ

pU
h

]
.

(80)

Since the deterministic 4-force is orthogonal to p, (80)
simplifies into:

pK(h) = −DKρµβν pρpβpµ
pU

∂pνh. (81)

Starting from equation (26), a straightforward calculation
shows that the contraction Kρµβνpρpβpµ vanishes identi-
cally.

One is therefore left with the wanted expression:

∂xµS
µ
c =

∫
P
fJµνDµDν θ(p0) δ(p2 −m2c2) d4p. (82)
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